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Abstract--The Peng-Robinson and Soave-Redlich-Kwong equations of state have been used to calculate 
the thermodynamic speed of sound in single-phase fluids consisting of pure components and mixtures, 
and in the two-phase region of a multicomponent mixture. The calculated velocities for single-phase fluids 
were compared with available data for methane, ethane, propane and a binary mixture of benzene in 
hexane. The basic trends observed in the data were predicted and in general, the comparison between 
theory and data was good. 

Values calculated for the multicomponent mixture along an isobar showed a sudden drop in the 
thermodynamic sound velocity when the dew point temperature was reached. Inside the two-phase region 
the velocity decreased along an isobar with a lowering of temperature and increased suddenly when the 
other dew point or bubble point temperature was reached. At temperatures below the bubble or second 
dew point, the fluid behaved as a liquid, i.e. sound velocity increased with temperature. Similar overall 
behavior was predicted when the assumption of "frozen" sound velocity was employed except that a 
sudden drop did not occur at the dew point temperature of the mixture. 

1. I N T R O D U C T I O N  

For certain pure components, empirical correlations are available which enable the thermodynamic 
speed of sound, a, to be evaluataed in regions of non-ideal fluid behavior. Although these 
correlations are, at present, much more accurate than is possible through use of equations of state, 
they are available for only a few components and then are applicable over only limited ranges of 
temperature and pressure. In the absence of such correlations or experimental data, or for 
consideration of multicomponent mixtures, equations of state must, of necessity, be used. 

In simulating the decompression characteristics of high-pressure natural gas in pipelines, Groves 
et al. (1978) presented a novel procedure for calculating the thermodynamic speed of sound in 
two-phase multicomponent fluids. By employing an ideal gas correlation for specific entropy, s ° 
(superscript ° denotes ideal gas property), and a thermal equation of state for prediction of phase 
behavior and departures from ideality, they were able to numerically solve for the thermodynamic 
speed of sound, given by 

7 ; ,  [t1 

where P is the absolute pressure and p and s are the mass density and specific entropy of the bulk 
fluid, respectively. To gain some insight into the nature of sound velocity inside the two-phase 
region of multicomponent fluids, this method is used to calculate a along various isobars for the 
Prudhoe Bay gas described by Groves et al. For comparative purposes, these calculations are also 
performed using the frozen sound velocity approximation. 

Since the selection of a suitable equation of state is important to both sets of calculations, an 
evaluation is made of two of the more popular equations used in the hydrocarbon processing 
industry, namely the Peng-Robinson (PR) equation of state (Peng & Robinson 1976) and the 
Soave-Redlich-Kwong (SRK) equation of state (Soave 1972). These equations are presented in 
appendix A. To evaluate the equations, calculated values of sound velocity are compared with 
available data for single-phase methane, ethane, propane and a binary mixture of benzene in 
hexane. Suitable data for two-phase multicomponent systems were not available. 

tPresent address: Western Research, Calgary, Alberta, Canada. 
++To whom correspondence should be addressed. 
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2. B A C K G R O U N D  

To determine the thermodynamic speed of sound in single-phase fluids, [1] is generally expressed 
in the more convenient form 

V 
a 2 = ' - - ,  [2J 

p~c 

where 7 is the specific heat ratio and ~: is the isothermal coefficient of volumetric expansion, which 
may be expressed as 

- 1  &' 
v r" [3] 

In [3], T is the temperature of the fluid and v is the specific volume. 
For ideal gases, [2] reduces to the well-known form 

aO z _ 7RT 
M ' [4] 

where R is the universal gas constant and M is the molecular weight. 
With two-phase mixtures, a different computational approach must be taken since y and ~ are 

no longer clearly defined. For this purpose, Michaelides & Zissis (1983) presented two forms of 
[1] which are well-suited to the calculation of a in pure two-phase fluids, namely 

a-' = \ d T /  [5] 

c-L + Z VLO d"P dP dv L 
-7" dT'- d T d T  

o r  

a'-= \ T /  \VLG/ 
, [6] 

d ( h L °  ~ 
\ rvLa/ &G dVL 

C:--~L + Z VLG 
T dT TVLG dT 

where subscripts L and G denote the liquid and vapor phases respectively, subscript LG denotes 
latent quantity, Z is the fluid quality (i.e. mass of vapor per unit mass of  the bulk fluid), h is specific 
enthalpy and v is a specific volume. In applying [5] and [6], v is evaluated from the expression 

v = (1 - ; ( )  VL + Z vo. [7] 

If  an accurate expression for saturation pressure were available, it was suggested that [5] could be 
used, otherwise correlations for hLG, VLG, CpL and VL could be obtained and [6] used. Although 
appropriate for single-component fluids, neither of these equations applies when more than one 
component exists since the thermodynamic manipulations used in their development no longer hold 
true, making [t] quite difficult to solve. For simplification purposes, it is often assumed that during 
the passage of a pressure wave, insufficient time is available for any mass or heat transfer between 
the two phases. As a result, the fluid quality •, remains constant, as do SG and SL along an isentrope 
of the bulk fluid. If [1] is expressed as 

a2 = v2(~P~ - \ ~ / ,  [8] 

and [7] is substituted into this expression, it follows that 

__V 2 

~) = re~ ) (eVo ,~ [91 

(1 - z ) ~ , T F  , + z \ -bTF/ ,  
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or, more simply, 
y2 

a~ = [101 
vb 

(1 - z ) ~ + - - v  
a~. ab 

Since the fluid quality Z, is effectively frozen in [9] and [10], the resultant sound velocity is referred 
to as the frozen speed of sound, as denoted by the subscript f. To account for different flow regimes, 
Nguyen et al. (198 I), in addition to assuming no heat or mass transfer between phases, considered 
the elastic behavior of the phase boundaries. In doing so, they were able to develop expressions 
specific to one-dimensional, stratified, slug and homogenous flow. 

To obtain the true thermodynamic speed of sound, it was suggested by Groves et al. that [1] 
be solved numerically. As previously mentioned, this approach shall be used here to evaluate a 
inside the two-phase region of the multicomponent Prudhoe Bay gas. However, since this method 
is computationally more demanding than that required for af, it is of value to compare the two 
solutions, as will also be done. 

In actuality, the observed speed of sound is not always that predicted by [1]. With polyatomic 
fluids, the speed of sound will vary with frequency as a result of the relaxation time required for 
partitioning of internal energy among the different degrees of molecular freedom (e.g. Richardson 
1958; McCormack & Creech 1972; Mistura 1972; Gammon & Douslin 1976). Generally, as the 
frequency increases, the molecules become stiffer and, subsequently, the observed speed of sound 
increases. In the case of two-phase fluids, such non-equilibrium effects are accentuated by the added 
response time required for heat and mass transfer between phases. It has also been suggested that, 
in two-phase fluids, slippage between phases (Gregor & Rumpf 1975) and surface tension effects 
(Kieffer 1977) may become significant. However, here, none of these complexities shall be 
considered, excepting the frozen sound assumption, and their mention is for completeness only. 

3. COMPUTATIONAL PROCEDURE 

3. I. Sound  velocity 

In its numerical form, [1] may be expressed as 

To solve this expression for a two-phase multicomponent fluid at a given temperature and pressure, 
AP was defined as 

and Ap was defined as 

zXP = P x 0.001 [12] 

Ap = p (T, P) - p (T*, P - AP). [13] 

The value of T* was evaluated from the isentropic condition 

s (T, P) = s (T*, P - AP). [14] 

To solve [14] for T*, a modified Newton-Raphson (NR) method (i.e. an NR method with the 
differential term numerically approximated) was employed. The objective function 4, for this was 
defined as 

~(") = s ( T ,  P )  - s ( T  *("), P - AP), [15] 

where superscript (n) denotes the iteration level. To initiate the iterative procedure, the following 
two estimates of T* were used: 

T*(°) = T [16] 

and 

T *(1) = T + 1.0 K. [17] 
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Convergence was determined by the relation 

t T ~ -  T ~-t~[ ~ 0.001 K [18] 

and was generally achieved within four iterations. 
To determine the value of p and s during each iteration, an isobaric-isothermal flash calculation 

was performed. Details of this are presented further on. 
In the single-phase region, sound velocity was calculated using [2] with the specific heat ratio, 

7 = %/c,., being evaluated for real fluid behavior and thus treated as a function of both pressure 
and temperature. In appendix B, expressions are provided for s, %, cv and x, as derived from the 
PR equation of state. Similar expressions for the SRK equation of the state are presented elsewhere 
(Picard 1985). 

3.2. Flash calculations 

A "flash calculation" is the computational process of determining the equilibrium composition 
and mole fraction of each phase in a multicomponent muttiphase system. It is only flashes at 
constant P and T which are considered here, and for brevity, these shall be referred to simply as 
flash calculations. 

There are a number of ways in which flash calculations may be performed but regardless of the 
approach taken, certain fundamental equilibrium and material balance relations must be satisfied. 
For a two-phase system these are: 

Phase equilibrium 
fL. (T,P,  x j ) = f G , ( T , e ,  yj), i =  1,nc;t [19] 

Summation of  mole fractions 

x i=  l, i =  1,n:, [20] 
i 

2)' ,=1,  i=l,nc,  [21] 
i 

z , = l ,  i = l , n ¢ ,  [22] 
i 

Component material balance 

yiG + xiL =zi,  i = l,n¢, [23] 

where [23] may be rewritten as 

G + L = 1 [24] 

to give the overall material balance. 

In [19]-[24],f denotes the fugacity of component i in solution; xi, yi and z~ are liquid, vapor and 
composite mole fractions of component i, respectively; G and L are the vapor-phase, or gas, and 
liquid-phase mole fractions, respectively; and n¢ is the total number of components in the system. 
The fugacity, f ,  may be obtained from the fugacity coefficient, which is defined as 

[25] 

Since f. is a function of T, P and chemical composition, so is q~: 

4), = dp,( T, P, 5 )  [26] 

An expression for the fugacity coefficient may be derived using the thermodynamic relation 

f FKO h RTldv--RTln(Z), [271 
RTln(q~,)= v L\~JT.v.5-VJ 

tPhase  equil ibrium equat ion [19] is derived f rom the ex t remum principle, which defines thermodynamic  equilibrium as the 

condition for which Gibbs free energy is a minimum. 
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as has been done in appendix B for the PR equation of state. In [27], V is the total system volume. 
n~ is the number of  moles of  component i and Z is the compressibility factor, which may be 
expressed as 

P~ 
Z = R-T' [28] 

where G is the molar volume. 
In general, the flash calculation problem is one in which T, P and zi are known and the ncphase 

equilibrium relations defined by [19], are to be solved for L, G, xi and y, subject to the mole fraction 
summation and material balance constraints of  [20], [21] and [23]. Since these relations form a 
system of non-linear equations, an iterative procedure is necessary to obtain a solution. The basic 
procedure which has been used here is as follows. 

As is often done, component k-factors (i.e. equilibrium ratios k¢ = ydx3 were chosen as the 
primary iteration variables, with the mass balance equations being expressed in the following form: 

~ x i - ~ y , = ~  z , (k i -  1) 
i " • 1 + G ( k , -  1) = 0, i = 1, no; [29] 

L = 1 - G; [30] 

kizi 
Y' = I + G ( k , -  I ) '  [31] 

and 

Yi 
x, = ~. [32] 

For a given set of  k, and with known values of z,  [29] was solved for G using the N R  method. 
Once G was known, [30] and [31] were used to determine L and y ,  respectively. The values of x, 
were then determined using [34]. To avoid numerical inconsistencies, the values of y, and x, were 
normalized following their evaluation from [31] and [32], and G was forced to satisfy the condition 
0~<G x< 1.0. 

The phase equilibrium requirements of [19] were considered to have been satisfied and 
convergence achieved when 

e t = ~ E ~ < 1 0 - " ,  i = l , n c ,  [33] 
i 

where e, is defined as 

e, = ln(~o,) - ln(~bL,) + In (k3. [34] 

Expressions for ln(~o ) and ln(~bL, ) were determined using [27]. By defining ef in terms of [34], it 
was generally possible'to satisfy [33] in the single-phase region. This is not possible if e, is expressed 
in the usual form, 

E, = In (fG,) - In (fL,). [351 

If [33] was not satisfied, then values of  ki were improved using a modification of  the Mehra et 
al. (1983) correction algorithm. The Mehra et al. correction algorithm is given by 

' J [367 

= k~ ") [exp ( -  e,ff)] a~"~ , [37] 

where the bracketed superscript denotes the iteration number and the exponent term c5 is the 
variable step length, defined by 

6(o) = ~o) = 1.0 [38] 

M.F. 1313,~B 
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and 
~ ( n -  HT, EIn- II 

~ ( n - I ) T . [ E ( n ) _ _  E n -  

£1n- IJ 

E ( n -  I)T. [E(n) __ EG,T- 

(~cn- [) 
'] 

(~ !n -  i) 
'] 

[39] 

[40] 

The modification in this algorithm results from use of [34], rather than [35], to evaluate Ei. In [39] 
and [40] the boldface terms are vectors and superscript T is the transpose operator. As was 
suggested by Mehra et  al., acceleration during any one iteration was restricted using [41] so that 
stability problems arising from poor initial estimates of k~ might be avoided: 

max[A ln(ki) ] = max[&i] ~< 6.0. [41] 

Selection of the Mehra et  al. correction algorithm was made on the basis of its good acceleration 
properties and because, compared to the more familiar quasi-Newton methods, it required storage 
of only one vector per iteration rather than an entire inverse Jacobian matrix. 

In applying flash calculations to the iterative solution of [15], it was appropriate, for com- 
putational efficiency, to use k-factors from the previous flash as starting values for the current one. 
Initial k-factors for the very first flash or single flash calculations were obtained using the 
expression presented by Wilson (1969): 

[ ( exp 5.37(1 + co,) 1 - P~, 

k i = P , [42] 

where co is the Pitzer acentric factor a-nd subscript c denotes critical property. 
In order to evaluate ln(~bL,) and ln(~bG~), the compressibility factors ZL and ZG first had to be 

determined, as is apparent from [27]. This was done by writing the equation of state for each phase 
in terms of its compressibility factor, resulting in two expressions of the form 

F ( Z )  = Z 3 + b Z "  + c Z  + d = O. [43] 

These were then solved separately for ZL and ZG. In [43] the coefficients b, c and d are functions 
of R, T, P, fi and/~ (see appendix B for the PR equation of state). Since [43] is a cubic equation 
with real coefficients it will have three possible solutions with at least one always being real. The 
normal procedure for selecting a compressibility factor from these solutions is, if only one real root 
occurs, then that is the compressibility factor, otherwise, for liquid-phase calculations the smallest 
root is chosen and for vapor-phase calculations the largest root is chosen. When k-factor estimates 
are poor, or the flash temperature and pressure are close to that of the true critical point, this 
procedure can result in a trivial solution. That is, a single phase may be predicted when in fact 
two phases exist. To help avoid this problem, the Gundersen (1982) algorithm was employed. 
However, the roots of [43] were solved analytically (Perry & Chilton 1973), rather than numerically 
as Gundersen had. 

Once the flash calculations had been performed it was necessary to evaluate thermodynamic 
properties of the bulk fluid. The following equations were useful in performing this task: 

(1) molecular weight M, 

M = ~ z i 'amw~,  i = l , n c ,  
i 

where amwi  is the molecular weight of component i; 

[44] 

(2) quality, Z 

g ~I'/G 
Z =  M 

[451 
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4.  R E S U L T S  A N D  D I S C U S S I O N  

4. I. Evaluation of the PR and SRK equations of state 

Both the PR and SRK equations of state are noted for their ability to provide quite accurate 
vapor densities and generate reliable equilibrium ratios. However, neither is able to provide liquid 
densities with the same level of  acceptability, although the PR equation of  state is somewhat better 
than the SRK. To establish further weaknesses or strengths of these equations, a good test is their 
ability to accurately calculate the thermodynamic speed of sound. 

In figures 1-3, the thermodynamic sound velocities calculated from the PR and SRK equations 
of state are compared with experimental data for methane (Stray 1974), ethane (Tsumura & Stray 
1977) and propane (Noury et al. 1958), respectively. The symbols P, and T~ used in these figures 
denote reduced pressure and reduced temperature, respectively. To indicate the degree of 
non-ideality at the conditions considered, the thermodynamic speed of sound, a, has been reduced 
by a °, the ideal gas speed of sound (Note: a ° is independent of pressure). The values for a ° are 
presented in table 1. 

The sudden drop in sound velocity which occurs along certain isotherms in each of  figures 1-3 
(e.g. 7", = 0.966 in figure I), indicates a change in fluid behavior. To the fight of this dip, the fluid 
behaves as a liquid (i.e. along a given isotherm an increase in pressure results in an increase in a); 
and to the left, as a vapor (i.e. along a given isotherm an increase in pressure results in a decrease 
in a). Although neither equation of state can be expected to provide extremely accurate predictions 

Table 1. Ideal gas sound velocities 

Methane Ethane Propane 
a ~ a ~ a ° 

L ( m / s )  ~ ( m / s )  L ( m / s )  

0.525 262.15 0.327 190.08 
0.787 322.10 0.458 222.79 
0.966 356.60 0.589 250.00 
1.260 405.47 0.720 273.56 
1.574 449.62 0.851 294.56 

0.982 313.71 
1.058 324.13 

0.941 270.04 
0.982 275.29 
1.009 278.73 
1.077 287.15 
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Figure I. Thermodynamic speed of sound in methane. 
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Figure 2. Thermodynamic speed of sound in ethane. 
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Figure 4. Thermodynamic speed of sound in benzene- 
hexane mixtures. 

of a, it is important to note that each-equation obeyed the basic trends observed in the data. In 
the liquid region it can be seen that neither equation of state is able to accurateIy predict a (i.e. 
errors as high as, approx. 25, 35 and 20% occurred in figures 1-3, respectively), as might have been 
expected. Based on the limited vapor data in figures 2 and 3, application of these equations to 
vapors would appear to be much more reasonable (i.e. errors of < 10%). 

To evaluate the mixing rules used for both equations of state, sound velocity calculations have 
been made for the binary benzene-hexane liquid-phase data of Snyder & Snyder (1974), as shown 
in figure 4. Although graphically the comparison between theory and experiment appears to be 
quite poor, the predictions are, at most, only 10% in error. This is surprisingly good considering 
the data are for a completely liquid system. The important thing to note here, is that errors do 
not increase upon mixing. This would indicate that the mixing rules are quite acceptable and, thus. 
give credibility to values of a calculated for multicomponent fluids. 

4.2. Sound velocity in two-phase multicomponent fluids 

Since neither equation of state performed significantly better than the other, in terms of sound 
velocity predictions, selection of one for the calculation of a and af in two-phase multicomponent 
fluids becomes a somewhat arbitrary decision. Here, the PR equation of state was chosen. 

In figure 5, the thermodynamic speed of sound, a, has been calculated along various isobars of 
the multicomponent Prudhoe Bay gas described by Groves et al. For each of the isobars shown, 
the fluid appears on the right of figure 5 as a completely gaseous mixture. Moving towards the 
left, a sudden drop in sound velocity appears for isobars 1-7MPa, indicating the onset of 
condensation--as can be confirmed by referring to the phase envelope presented in figure 6. The 
occurrence of such behavior has been confirmed by the decompression data obtained by Groves 
(1976) for Prudhoe Bay gas. In these data, a sudden reduction in expansion wave velocity was 
observed at approximately the calculated dew point. The reason for this sudden drop in a, is the 
fact that the formation of a second phase, compressibility of the fluid decreases. The effects of this 
are more significant at the higher pressures. Moving further to the left, a sudden jump in sound 
velocity appears as isobars 2-7 MPa leave the two-phase region. Here, however, the greatest effects 
occur at the lower pressures. To the left of the sudden jump, the fluid behaves as a liquid and hence 
the sound velocity increases as the temperature decreases. Since the 1 MPa isobar remains in the 
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two-phase region, for the temperature range of-the figure, this sudden jump is not shown. Moving 
from right to left along the 8 MPa isobar, which never intersects the two-phase region, it can be 
seen that, initially, the single-phase fluid behaves as a gas (i.e. sound velocity decreases with a 
decrease in temperature) and at approx. 240 K, begins to behave as a liquid (i.e. sound velocity 
increases with a decrease in temperature). As a philosophical point, it is of interest to note that 
the 6 and 7 MPa isobars pass through the retrograde region (see figure 6) and, therefore, are in 
the vapor phase prior to entering the two-phase region and also after leaving, yet upon leaving 
the two-phase region, the fluid behaves, in terms of sound velocity, as a liquid. 

If sound velocity in the two-phase region is calculated using [10] for the frozen speed of sound, 
then the results are those shown in figure 7. In comparison with the thermodynamic values of figure 
5 it can be seen that the frozen assumption does not produce a sudden drop in sound velocity upon 
entering the two-phase region and, subsequently, predicts higher sound velocities in this region. 

It should be mentioned that in developing figure 5, some computational difficulties were 
encountered along the 5 MPa isobar between the temperatures of 201 and 210 K. That is, 
calculations converged on a single-phase solution when, based on figure 6, two phases must exist. 
The curve was therefore completed by extrapolation. The reason that only the 5 MPa isobar was 
affected and not the others is that it passes through the difficult region of the critical point, as can 
be seen from figure 6. In generating the 5 MPa curve for figure 7, such difficulties were not 
encountered, thus, indicating that the problem was in part, a result of the numerical procedure used 
in calculating a. 

5. CONCLUSIONS 

(1) Both the PR and SRK equations of state are weak in predicting sound velocities in liquids, 
however, each shows some promise for application to vapors (i.e. < 10% error). 

(2) Both equations of state are able to predict the basic trends observed in the available 
experimental data. 

(3) Mixing rules for the equations of state appear to be quite acceptable, thus giving credibility 
to sound velocity calculations for multicomponent mixtures. 

(4) To more fully examine the usefulness of the PR and SRK, or any other equations of state, 
in predicting sound velocities, additional experimental data are required. 
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Figure 7. Frozen speed of sound in Prudhoe Bay mixture. 

(5) Although the assumption of no h~eat or mass transfer between phases greatly simplifies the 
calculation of sound velocity in two-phase multicomponent fluids, it predicts somewhat higher 
speeds than the truly thermodynamic solution and is not able to predict the sudden drop in 
sound velocity upon intersection of the dew line. 

(6) The attenuation of sound velocity inside the two-phase region of mutticomponent fluids is an 
interesting phenomenon which is worthy of further study. 
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PR equation of state 

SRK equation of state 

A P P E N D I X  A 

RT gt(T) 
p - _ - -  

/~ = 0.07780 RT~_ p '  

5(T) = 5(To) &(T~, ca), 

45724 R2T~ a ( L )  = o. 
Pc 

~i (T~, co) = [1 + rh(1 - T°")] 2, 

rh = 0.377464 + 1.54226o9 - 0.26992o92. 

RT 5(T) 
e =  - -  

5 = 0.08664 RT~ L '  

[A.1] 

[A.2] 

[A.31 

[A.4] 

[A.5] 

[A.6] 

[A.7] 

[A.8] 
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Mixing rules 

5(T)  = 5(T~) ~(T~, o)), [A.9] 

5(T~) = 0.42747 RZT~ pc , [A.10] 

~(T~, co) = [1 +rh(1  - TO")] -', [A.11] 

rh = 0.480 + 1.574o) - 0.176¢o 2. [A.12] 

b = ~ y , b , ,  i = l , n ¢ ,  [A.13] 
i 

= ~ y ,  yj5 o, i , j= l,n¢, [A.14] 
i j 

5,j = (1 - d,)) 5 o.5 5 °'. [A.15] 

In [A.1]-[A.15], d is the binary interaction coefficient, y denotes mole fraction, superscript " 
indicates equation of  state parameter,  superscript" denotes molar specific property, subscript r 
denotes reduced property and subscripts i and j indicate chemical component .  

Values used for the binary interaction coefficient were those presented by Oellrich et al. (1981). 
All critical constants and acentric factors were obtained from Reid et al. (1977). 

A P P E N D I X  B 

(1) Internal energy, 

aside, 

Thermodynamic Properties--PR Equation of State 

5 - 5 ~ =  - T - P  d~ [B.1] 

P 

T 

(note: 5'  equals dS /dT)  therefore, 

0 P )  R 6'  
~ = _ _ [B.2] 

(5 - 5 ' T )  

T lB.3] 

(2) Enthalpy, fi 

f ~  d~7 5 - ~7 ° = (fi - 5"T) ~(~ + b) + b ( ~ -  b) 

= 2.8286 in 7 2 . ~ / '  

~ = Z y i S , ,  i=i,  nc. 
i 

;7[<) 1 f i - & = P , 7 - R r -  r ~ - P  d~ 

+ 2.414b] 

&=yy,  fi;, i=l,n~. 
t 

[B.4] 

[B.5] 

[B.6] 

[B.7] 

[B.8] 

lB.9] 
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(3) Entropy, g 

i - i ° = - R l n ( P ) + R l n ( Z )  - -~  +- 

( _ ~ )  d' (~-- 0.414"~ 
=Rln  2 . ~  In + 2.414/~)' 

g° = ~ y, g~' - R Z Y, In (y,), 
i i 

(4) Heat capacity at constant volume cv 

I : C : 9  " d v - ~ = - T  - ~  dv 

\ aT .]~ 

- ~ " T  " -  0.414ff~ 

i=  1,n=. 

?~=Zy,?i~=Zy~(?~,-R), i=l,n¢. 
i i 

(5) Heat capacity at constant pressure, ?p 

[B.10] 

[B.11] 

[B. 12] 

[B. 13] 

[B. 14] 

[B.lS] 

[B.161 

/dp'k2 

t,o:r-), 
[ ) ~ , -  

- (° (/7~"7°)). [B.i8] 
T[Rg(9 + 6) + (R~ - ~' ) (9  -- 6)] 2 

= - - R  
2a(9  + 6 ) ( 9  - 6 )  2 - RT[9(9 + 6) + ig(9 - ig)] ~ 

- a " T  (~ - 0.4146"~ 
× 2 . ~  in + z ~ ) '  [B.19] 

cp =~Yi ?°pi, i = 1,n=. [B.20] 
i 

(6) Specific heat ratio, 7 

? - - -  [B.21] 

(7) Isothermal coefficient of volumetric expansion, 

T 

aside, 
de)  - R T  2k (9 + 6) 
-b-7 T = (9 - 6) - - - - - - 5  + [9(9 + 6)  + 607 - 6)12 

- R T [ C ( C  + 6) + ~(~ - ~)]2 + 2a(C + ~ ) (~  - ~)~ 

[B.22] 

[B.23] 

C~(9 + 6) (9  - 6) + ~(9 - b)2] ~ [B.24] 
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therefore, 

(8) a'  

aside, 

and 

K = 

26¢(f  + /~ ) ( f  - /~ ) :  - RT~[~7(f +/~) +zS(/: - ~)]2" 

d~ 
6"= dt =Z~ '>") )a~ '  i , j =  1,n~, 

i ] 

o, (So  ,] 
2 k\g/ a:+\g/ . , ,  

[B.25] 

[B.26] 

[B.27] 

[B.28] 

therefore, 

where 

t " i n.  - -  ~ :~i 

c,;= a,j (4 + 4) 

o,= -m,l  ) 

d"b 
e " = - ~ _ = E g y i y j a i j ,  i , j = l , n ¢ ,  

i j 

[B.29J 

[B.30] 

lB.31] 

[B.32] 

[B.331 

(10) Fugacity coefficient, qSi 

1 f ~ [ ( O P )  R T J d v - R T l n ( Z )  

L;i . A (2~_y,4j 
= -~b ( Z  - l )  - l n ( Z  - B )  - ? . ~ 8 B  

(i # j )  

~ )  In ( Z  +__ 2"414B~ 
0.414B/' 

[B.341 

IB.351 

where 

and 

6P 
A = R2T-------- 5 [B.36] 

bP 
B = R--T' [B.37] 

(11) Compressibility equation, F ( Z )  

F ( Z )  = Z 3 - (1 - B)Z'- + (A - 3B 2 - 2B)Z  - (AB - B'- - B 3) 

= o. [B.3S] 

o o Correlations for the ideal gas properties, h °, cp and s , were obtained from the API  Technical 
Data Book." Petroleum Refining (1977). 


